Model 898X

Electronic Preset Counter

Model 899X

Contador electrónico de preselección
con dos preselecciones

Elektronischer Vorwahlzähler

mit zwei Vorwahlen

Compteur à présélection électronique
avec deux présélections

Contatore elettronico a preselezione
 con due preselezioni

1 Preface 4
2 Safety instructions and Warnings 4
2.1 Use according to the intended purpose 4
2.2 Mounting in a control panel 4
2.3 Electrical Installation 5
2.4 Cleaning and maintenance 5
3 Description 5
4 Display/Operating elements 6
5 Inputs 6
5.1 INP A, INP B 6
5.2 RESET 6
5.3 GATE 6
5.4 LOC.INP 6
5.5 MPI 1/ MPI 2 6
6 Outputs 6
6.1 Output 1 / Output 2 6
6.2 Active Outputs 6
7 Programming 6
7.1 Entering the programming 6
7.2 Selecting the main menus 7
7.3 Entering a sub-menu 7
7.4 Selecting the parameters 7
7.5 Changing parameter values 7
7.6 Setting count values 7
7.7 Ending the programming 7
7.8 Programming menu 7
7.8.1 Select language 7
7.8.2 Setting the Basic Function 8
7.8.3 Pulse Counter 8
7.8.4 Tacho/Frequency meter 10
7.8.5 Timer 11
8 Operation 15
8.1 Switching the display during operation 15
8.2 Setting the presets 15
8.2.1 Setting via front keys 15
8.2.2 Teach Function 16
8.2.3 Teach-In with tracking presets 16
8.3 Set Function 16
8.4 Default Parameters 16
8.4.1 Entry into the default setting 16
8.4.2 Selecting the parameter sets 16
8.4.3 Accepting the setting 16
8.4.4 Parameter Set Table 17
9 Error Message 17
10 Connections 17
10.1 Signal and Control Inputs 17
10.2 Supply Voltage and Outputs 17
11 Technical Data 17
11.1 General Data 17
11.2 Pulse Counter 17
11.3 Tacho/Frequency Meter 18
11.4 Timer 18
11.5 Signal and Control Inputs 18
11.6 Outputs 18
11.7 Supply Voltage 18
11.8 Sensor Supply Voltage 18
11.9 Climatic Conditions 18
11.10EMC 18
11.11 Device Safety 18
11.12Mechanical Data 18
11.13Connections 19
12 Scope of Delivery 19
13 Ordering Codes 19
14 Frequencies (typical) 19
14.1 Pulse Counter 19
14.2 Frequency Meter 19
15 Input modes: Pulse counting 20
16 Input modes: Timing 22
17 Input modes: Frequency meter 23
18 Output operations 24
19 Help Texts 26
20 Dimensional Drawings 28

1 Preface

(1)
Please read this instruction manual entirely and carefully before installation and start-up. Please observe all warnings and advice, both for your own safety and for general plant safety. If the device is not used in accordance with this instruction manual, then the intended protection can be impaired.

2 Safety instructions and Warnings

Please use the device only if its technical condition is perfect. It should be used only for its intended purpose. Please bear in mind safety aspects and potential dangers and adhere to the operating instructions at all times. Defective or damaged devices should be disconnected from the mains immediately and taken out of operation. The device shall not be opened. Use the repair service of the manufacturer. Only connect the device to the electricity networks provided to that purpose.
The safety of the system in which the device is integrated is the responsibility of the installer.
Disconnect all electricity networks prior to any installation or maintenance work.
Use exclusively cables approved in your country and designed for your temperature and power ranges. Installation and service work shall be carried out exclusively by qualified personnel.
The device must compulsorily be protected with approved external fuses. The value of these fuses can be found in the technical information.

\triangleThis symbol is used on the device to remind of the existence of dangers, which are referred to in this manual.

2.1 Use according to the intended purpose

The preset counter detects and measures pulses, times and frequencies up to max. 60 kHz and offers a wide variety of different operating modes. At the same time, the preset counter processes programmed presets. Use for any purpose over and beyond this will be deemed as not in accordance with its intended purpose and thus not complying with the requirements.

The application area for this device lies in industrial processes and controls, in the fields of manufacturing lines for the metal, wood, plastics, paper, glass, textile and other like industries. Overvoltages at the terminals of the device must be kept within the limits of over-voltage Category II.
The device must only be operated when mounted in a panel in the correct way and in accordance with the section "Technical Data".

The device is not suitable for use in hazardous areas and for areas excluded in EN 61010 Part 1. If the device is used to monitor machines or processes in which, in the event of a failure of the device or an error made by the operator, there might be the risk of damaging the machine or causing an accident to the operators, it is your responsibility to take the appropriate safety measures.

The device has been designed for indoor operation. It may nevertheless be used outdoors, provided the technical data is adhered to. In this case, take care to provide suitable UV protection.

2.2 Mounting in a control panel

CAUTION
Provide a free space of 10 mm all around the device for its ventilation.

The device should be mounted so that the terminals are out of the reach of the operator and cannot be touched by him. When mounting the device, consider the fact that only the front side is classified as accessible for the operator.

Mounting instructions

1. Remove the mounting clip from the device.
2. Insert the device from the front into the panel cut-out, ensuring the front-panel gasket is correctly seated.
3. Slide the fixing clip from the rear onto the housing, until the spring clamps are under tension and the upper and lower latching lugs have snapped into place.
Note: In case of proper installation, IP65 can be reached on the front side.

2.3 Electrical Installation

The device must be disconnected from any power supply prior to any installation or maintenance work. Make sure that no more voltages LIABLE TO CAUSE AN ELECTROCUTION are present.

AC-powered devices must only be connected to the low-voltage network via a switch or circuit breaker installed close to the device and marked as their disconnecting device.

Installation or maintenance work must only be carried out by qualified personnel and in compliance with the applicable national and international standards.

Take care to separate all extra-low voltages entering or exiting the device from hazardous electrical conductors by means of a double or reinforced insulation (SELV circuits).

The device must be protected externally for its proper operation. Information about the prescribed fuses can be found in the technical information.

The relay outputs are not protected internally in the device. Without suitable protection of the relay outputs, undesired heat development or even fire may occur. The relay outputs must be protected externally by the manufacturer of the plant. It must also be made sure that, even in case of a malfunction, the values stated in the technical data are under no circumstances exceeded.

- During installation, make sure that the supply voltage and the wiring of the output contacts are both fed from the same mains phase, in order not to exceed the maximum permitted voltage of 250 V .
- The cables and their insulation must be designed for the planned temperature and voltage ranges. Regarding the type of the cables, adhere to the applicable standards of the country and of the plant. The cross sections allowed for the screw terminals can be found in the technical data.
- Before starting the device, check the cables for proper wiring and tightening. The screws of
unused screw terminals must be screwed to the stop, so that they cannot loosen and get lost.
- The device has been designed for overvoltage category II. If higher transient voltages cannot be excluded, additional protection measures must be taken in order to limit the overvoltage to the values of CAT II.

Advice on noise immunity

All connections are protected against external sources of interference. The installation location should be chosen so that inductive or capacitive interference does not affect the device or its connecting lines! Interference (e.g. from switchmode power supplies, motors, clocked controllers or contactors) can be reduced by means of appropriate cable routing and wiring.

Measures to be taken:

Use only shielded cable and control lines. Connect shield at both ends. The conductor cross-section of the cables should be a minimum of $0.14 \mathrm{~mm}^{2}$.
The shield connection to the equipotential bonding should be as short as possible and with a contact area as large as possible (low-impedance). Only connect the shields to the control panel, if the latter is also earthed.
Install the device as far away as possible from noise-containing cables.
Avoid routing signal or control cables parallel to power lines.

2.4 Cleaning and maintenance

The front side of the unit should only be cleaned using a soft damp (water!) cloth. Cleaning of the embedded rear side is not planned and is the responsibility of the service personnel or of the installer.

In normal operation, this device is maintenancefree. Should the device nevertheless not operate properly, it must be sent back to the manufacturer or to the supplier. Opening and repairing the device by the user is not allowed and can adversely affect the original protection level.

3 Description

6 -digit 14-segment LED display, 14 mm
Help Text display
Preset counter with two relay outputs
Preset entry via the front keys or via the Teach-In function
Step or tracking preset
Pulse counter, Frequency meter, Timer or Hour meter
Preset-, Batch- or Total counter
Set function for pulse counter and timer

Multiplication and division factor
Averaging and Start Delay for frequency meter Input modes:
Pulse counter: cnt.dir, up.dn, up.up, quad, quad2, quad4, $\mathrm{A} / \mathrm{B},(\mathrm{A}-\mathrm{B}) / \mathrm{Ax} 100 \%$
Frequency meter: $A, A-B, A+B$, quad, A / B, (A-B)/Ax100\%
Timer: FrErun, Auto, InpA.InpB, InpB.InpB
Output operations:
Add, Sub, AddAr, SubAr, AddBat, SubBat, AddTot, SubTot, Trail, TrailAr
4-stage RESET mode
3-stage keypad locking (Lock)
MPI input for Display Latch, Teach-In or Set function
Supply voltage $100 \ldots 240$ V AC $\pm 10 \%$ or 10 ... 30 VDC

4 Display/Operating elements

1	6-digit LED display
2	Status display LED1 / LED2
3	RESET key / ENTER key
4	Key LEFT
5	Key UP
	K
7	Key DOWN
7	Key RIGHT

5 Inputs

5.1 INP A, INP B

Signal inputs: function acc. to operating mode. Max. frequency 60 kHz , can be damped in the programming menu to 30 Hz .
Pulse counter: Count inputs
Frequency meter: Frequency inputs
Timer:
Start input or Start/Stop inputs

5.2 RESET

Dynamic reset input: resets the pulse counter or timer to zero ('Add' output operations) or to preset value 2 ('Sub' output operations). The reset input can be inhibited in the programming menu.
Pulse counter: RESET input

Frequency meter: no function
Timer:
RESET input

5.3 GATE

Static gate input: function dependent on operating mode.
Pulse counter: no counting while active Frequency meter: no counting while active Timer: no time measurement while active

5.4 LOC.INP

Static keypad lock input for preset or programming. Lock-out level can be set in the programming menu.

5.5 MPI $1 / \mathrm{MPI} 2$

User Input. Programmable as Display Latch, Set or Teach-In input.

6 Outputs

6.1 Output 1 / Output 2

Relays with potential-free changeover contacts.

6.2 Active Outputs

LED1 and LED2 indicate an active output.
For safety switching the relays can be inverted, i.e. the relays will be de-energized when the presets are reached. To do this, the parameters Pr.OUT1 and Pr. OUT2 must be set to \square (for permanent signal) and to ШГ or ШЈ (for timed signal).

7 Programming

7.1 Entering the programming

Simultaneously press the UP key and the DOWN key for 3 sec.
The security prompt appears alternately in the display

Programming can be exited again using the ENTER key.
Press the UP key or DOWN key to continue with the programming.

The security prompt YES appears in the display

The first menu item in the main menu appears in the display

When ending the programming via PROG. NO the counter contents are not reset.

7.2 Selecting the main menus

The main menus are selected using the UP and DOWN keys

Indicated by LED1

7.3 Entering a sub-menu

The first parameter is displayed with the current setting flashing.
I NV Indicated by LED1 and LED2

7.4 Selecting the parameters

$\square \measuredangle \triangle \nabla \triangleright$ The parameters are selected using either the RIGHT key or $\square \triangleleft \Delta \nabla$ the LEFT key.

7.5 Changing parameter values

$\square \triangle \triangle \nabla \triangleright$	Press the ENTER key.
$\square \triangle \Delta \nabla \triangleright$	Change the parameter value using the UP or DOWN keys.
$\square \triangleleft \Delta \triangle \nabla \triangleright$	
$\square \Delta \triangle \nabla \triangleright$	Press the ENTER key. The new setting is again displayed flashing.

7.6 Setting count values

$\square \triangle \triangle \nabla \triangleright$	Press the ENTER key.
$\square \triangle \triangle \nabla \triangleright$	Select the decade using the RIGHT key or the LEFT key.
$\square \triangle \triangle \nabla \nabla$	

Change the count value using the UP key or the DOWN key.

Press the ENTER key. The new setting is again displayed flashing.

7.7 Ending the programming

Select the menu item NO

Pressing the ENTER key acknowledges this prompt and allows the programming to be repeated. The previouslyprogrammed values are preserved. These can now be checked or changed once again.

Pressing the UP key or the DOWN key selects the termination of the programming.

$\square \triangle \nabla \triangleright$
Pressing the ENTER key acknowledges this prompt and terminates the programming; the modified settings are saved in the EEPROM.

SAVE

When ending the programme via END.PRG. YES the counter contents are reset.

No count pulses, frequencies or times are detected or measured whilst programming is taking place.

7.8 Programming menu

Factory settings are highlighted in grey

7.8.1 Select language

LANGU. Submenu: Select language

| HLP.TथT. | Help Text |
| ---: | :--- | :--- |
| YES | Help Text ON |
| ND | Help Text OFF |

| 5L．LANG． | Select language for Help Text |
| ---: | :--- | :--- |
| EN | English |
| DE | German（Deutsch） |

（1）
When＇Help Text ON＇is selected，a running text in English or German automatically appears after 3 sec ．in the display．This provides an explanation of the menu item．Once a running text has started，it can be cancelled by pressing any key．

7．8．2 Setting the Basic Function

Submenu：Basic function
FUNET．
［DUNT Pulse counter（7．8．3）
TIMER
Timer／Hour meter
（7．8．5）
TA［HD Tacho／Frequency meter（7．8．4）

（1）
Changing the basic function causes all parameters to be reset to factory settings．

7．8．3 Pulse Counter

7．8．3．1 $\begin{aligned} & \text { Submenu for the Signal and Control } \\ & \text { inputs }\end{aligned}$
INPUT Submenu for programming the signal and control inputs

INP．PDL．Input polarity

PNP	PNP：switching to Plus for all inputs in common
NPN	NPN：switching to 0 V for all inputs in common
FILTER	Filter for signal inputs INP A and INP B
DFF	Maximum count frequency
ON	Damped to approx． 30 Hz （for control with mechanical contacts）
LNT．INP．	Count Input mode （See also under 15．）
［NT．DIR	Count／Direction control INP A：count input INP B：count direction input
UP．DN	Differential counting［A－B］ INP A：count input add INP B：count input sub

QURD4

QUADE

When the MPI input is activated the display is＂frozen＂and remains＂frozen＂until the MPI input is deactivated． Internally the preset counter continues counting．

When the MPI input is activated

 the current count value for the preset that has just been selected will be adopted as the new preset value．（See also 8．2．2）
5ET When the MPI input is activated the preset counter will be set to the value specified in the parameter SETPT．（See also 8．3）

LDC．INP．
PROG．
PRESET
Totalising［A＋B］
INP A：count input add INP B：count input add
Quadrature input
INP A：count input 0°
INP B：count input 90°
Quadrature with pulse
doubling（x2）
INP A：count input 0°
INP B：count input 90°
Each pulse edge of INP A will be counted

Quadrature $x 4$

INP A：count input 0°
INP B：count input 90°
Each pulse edge of INP A and INP B will be counted．

Ratio measurement［A／B］
INP A：count input A
INP B：count input B

Percentage differential counting

［（A－B）／A in \％］
INP A：count input A
INP B：count input B

User input 1

User input 2

Lock input

When the Lock input is activated， the programming is inhibited．
When the Lock input is activated， the setting of the preset values is inhibited．

PRGPRE. When the Lock input is activated, the setting of the preset values and the programming are both inhibited.

7.8.3.2 Submenu for Output operations

MODE Submenu for determining the operation of the outputs

MDDE Output operation
 (See also under 18.)
 ADI Count mode ADDING
 Outputs active when count status \geq preset value Reset to zero
 SU马 Count mode SUBTRACTING
 Output 1 active when count status \leq preset value 1 Output 2 active when count status ≤ 0 Reset to preset 2
 A I I.AR Count mode ADDING with automatic reset
 Output 1 active when count status \geq preset value 1 Output 2 (timed signal) active when count status = preset value 2
 Automatic reset to zero when count status = preset value 2 Reset to zero
 SUBAR Count mode SUBTRACTING with automatic reset

Output 1 active when count status \leq preset value 1 Output 2 (timed signal) active when count status $=0$ Automatic reset to preset 2 when count status $=0$ Reset to preset 2
A I I. BA T Count mode ADDING with automatic reset and Batch counter
Output 2 (timed signal) active when main counter = preset value 2
Automatic reset to zero when main counter = preset 2 Batch counter counts the number of automatic repetitions of preset 2 Output 1 active when Batch counter \geq preset 1 Manual reset sets both counters to zero.

Electrical reset sets only the main counter to zero.
Count mode SUBTRACTING with automatic reset and Batch counter
Output 2 (timed signal) active when main counter = zero Automatic reset to preset 2 when main counter $=$ zero
Batch counter counts the number of automatic repetitions of preset 2
Output 1 active when Batch
counter \geq preset 1
Manual reset sets main counter to preset value 2 batch counter to zero
Electrical reset only sets the main counter to preset value 2
AI I.TDT Count mode ADDING with automatic reset and Total counter
Output 2 (timed signal) active when main counter = preset value 2
Automatic reset to zero when main counter $=$ preset value 2 Total counter counts all the count pulses from the main counter Output 1 active when total counter \geq preset value 1 Manual Reset sets both counters to zero
Electrical reset sets only the main counter to zero
SUBTDT Count mode SUBTRACTING with automatic reset and Total counter
Output 2 (timed signal) active when main counter = zero Automatic reset to preset value 2 when main counter = zero Total counter counts (sub from preset value 1) all count pulses from main counter
Output 1 active when Total counter \leq zero
Manual reset sets both counters to the preset values
Electrical reset sets only main counter to preset value 2
TRAIL Tracking Preset mode When preset 2 is changed then preset 1 automatically tracks it. Reset to zero
Preset 1 relative to Preset 2
TRAR Tracking Preset mode with automatic reset

When preset 2 is changed then preset 1 automatically tracks it． Reset to zero．
Automatic reset to zero when main counter＝preset value 2. Preset 1 relative to Preset 2

7．8．3．3 Submenu for configuration

［DNFIG．Submenu for matching the input pulses to the display．

Multiplication factor
can be programmed from 00.0001 to 99.9999 The setting 00.0000 will not be accepted．
\＃IV I 50．Division factor
（ $1, \square \square \square \square$ can be programmed from 01.0000 to 99.9999 A setting＜ 01.0000 will not be accepted．

$7 P$	Decimal point setting （only optical function）
	0 no decimal place
	$0.0 \quad 1$ decimal place
	0.00 2 decimal places
	0.00033 decimal places
	0.0000 4 decimal places
	0.000005 decimal places
5ETPT．	Set value
因明可	Set value can be programmed from－999999 to 999999 A previously programmed decimal point will be displayed

7．8．3．4 Submenu for reset mode

PE S．MOI．Submenu for setting the reset

RE SMOD．Reset mode

MANEL．
Manual reset（reset key）and electrical reset（reset input）

> NDRE 5．No reset possible （reset key and reset input inhibited）
> EL．RES．Only electrical reset possible （reset input）
> MANRE 5．Only manual reset possible （reset key）

Electrical Reset：
Always resets only the main counter．

Manual Reset：

Resets the main counter（ACTUAL）and auxiliary counters（BATCH or TOTAL），if the value of the main counter or the value of an auxiliary counters is shown on the display．

7．8．3．5 Preset 1

see below 7．9．5．5

7．8．3．6 Preset 2

see below 7．9．5．6

7．8．4 Tacho／Frequency meter

7．8．4．1 Submenu for the Signal and Control inputs

Submenu for programming the signal and control inputs
INP．PDL．Input polarity
PNP PNP：switching to Plus for all inputs in common
NPN NPN：switching to 0 V for all inputs in common
FILTER Filter for signal inputs INP A and INP B

maximum count frequency
Damped to approx． 30 Hz （for control with mechanical contacts）
TAC．INP．
Input mode Frequency measurement （see also under 17．）
A Simple frequency measurement INP A：Frequency input INP B：no function
A－B Differential measurement ［A－B］
INP A：Frequency input A INP B：Frequency input B
$A+B \quad$ Total measurement $[A+B]$ INP A：Frequency input A INP B：Frequency input B
Frequency measurement with direction detection［Quad］ INP A：Frequency input 0° INP B：Frequency input 90°
A：B Ratio measurement［A／B］

	INP A: Frequency input A
	INP B: Frequency input B
$A O B$	Percentage differential
measurement [(A-B) / A in \%]	
	INP A: Frequency input A
	INP B: Frequency input B

MP.INP.	User input 1
MP.INP.C	User input 2
LATCH	When the MPI input is activated the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the frequency meter continues running (Display store).
TEA[H	When the MPI input is activated the current frequency for the preset that has just been selected will be adopted as the new preset value. (See also 8.2.2)
LDEINP.	Lock input
PROG.	When the Lock input is activated the programming is inhibited

PRESET When the Lock input is activated the setting of the preset values is inhibited.
PR G.PRE. When the Lock input is activated the setting of the preset values and the programming are both inhibited

7.8.4.2 Submenu for configuration

[DNFIG. Submenu for matching the input pulses to the display.

Multiplication factor
can be programmed from 00.0001 to 99.9999 .The setting 00.0000 will not be accepted

Division factor
can be programmed from 01.0000 to 99.9999 A setting < 01.0000 will not be accepted.

Display mode
Calculation and display of the frequency / speed in $1 / \mathrm{sec}$
MIN-I Calculation and display of the frequency / speed in $1 / \mathrm{min}$

7 O	Decimal point setting (determines the resolution)	
	0	no decimal place
	0.0	1 decimal place
	0.00	2 decimal places
	0.000	3 decimal places

Moving average
Moving average calculated AVG 2 over 2 measurements AVG 5 over 5 measurements AVG 10 over 10 measurements AVG 20 over 20 measurements

5 TART Start delay

D. .2 Programmable from 00.0 up to 99.9 sec .

At the start of a measurement the measurement results within this time-period are ignored.

Waiting time
Programmable from 00.1 up to 99.9 sec .

This value specifies how much time should elapse, after the last valid edge, before zero is to be displayed.

7.8.4.3 Preset 1

See below 7.9.5.5

7.8.4.4 Preset 2

See below 7.9.5.6

7.8.5 Timer

7.8.5.1 Submenu for the Signal and Control inputs

INPUT Submenu for programming the signal and control inputs

Input polarity
PNP: switching to Plus for all inputs in common
NPN: switching to 0 V for all inputs in common

Filter for signal inputs INP A

 and INP BDFF for electronic control of the signal inputs
DN for mechanical control of the signal inputs (for control with mechanical contacts)

5 TART	Input mode Time measurement	7．8．5．2 Submenu for output operations	
	（see also under 16.	MOTE	Submenu for determining the
INATNB	Start：Edge to INP A		operation of the outputs
	Stop：Edge to INP B	MOTE	Output operation
INBINB	Start：1．Edge to INP B Stop：2．Edge to INP B		（See also under 18．）
		$A D 7$	Count mode ADDING
FRRERUN	Timing can only be controlled via the Gate input．INP A and INP B have no function．		Outputs active when count status \geq preset value Reset to zero
AUTO	The timer is reset by means of a RESET（to zero when adding，to	$5 \cup B$	Count mode SUBTRACTING Output 1 active when
	RESET（to zero when adding，to preset 2 when subtracting）and		Output 1 active when count status \leq preset value 1
	then starts timing again．Timing		Output 2 active when
	is stopped with adding		count status ≤ 0
	operations when preset 2 is		Reset to preset 2
	reached．Timing is stopped with subtracting operations when zero	A刀 \＃，保	Count mode ADDING with automatic reset
	is reached．A RESET during the timing process also causes this		Output 1 active when count
	to stop．		status \geq preset value 1
	INP A and INP B：no function．		Output 2 （timed signal）active when count status＝preset value
With AUTO：no output operations with automatic repeat．			2
			Automatic reset to zero when count status＝preset value 2 Reset to zero
MPINPI	User input 1		
MP．INP．C	User input 2	$5 \cup B A R$	Count mode SUBTRACTING with automatic reset
LAT［H			Output 1 active when count status \leq preset value 1
	the display is＂frozen＂and remains＂frozen＂until the MPI		Output 2 （timed signal）active when count status $=0$
	remains＂frozen＂until the MP input is deactivated．		
	Internally the preset timer		Automatic reset to preset 2 when count status $=0$
TEALH	When the MPI input is activated		Reset to preset 2
	the current count value for the preset that has just been	A刀IBAT	Count mode ADDING with automatic reset and Batch
	selected will be adopted as the		counter
	new preset value．		Output 2 （timed signal）active
	（See also under 8．2．2）		when main counter＝preset
SET	When the MPI input is activated		value 2
	the preset counter will be set to		Automatic reset to zero when main counter $=$ preset 2
	the value specified in the		Batch counter counts the number of automatic repetitions of preset 2
	under 8．3）		
$\angle D L I N P$.	Lock input		Output 1 active when Batch counter \geq preset 1
PROG．	When the Lock input is activated the programming is inhibited		Manual reset sets both counters to zero．
PRESET	When the Lock input is activated the setting of the preset values is inhibited．		Electrical reset sets only the main counter to zero．
		SUB，${ }^{\text {GAT }}$	Count mode SUBTRACTING with automatic reset and Batch counter
PRGPRE．	When the Lock input is activated the setting of the preset values and the programming is both inhibited．		Output 2 （timed signal）active when main counter＝zero Automatic reset to preset 2 when

7．8．5．2 Submenu for output operations
Submenu for determining the operation of the outputs

See also
Count mode ADDING
Outputs active when count status \geq preset value Reset to zero
count status \leq preset value 1 Output 2 active when count status ≤ 0 Reset to preset 2
A I I，AR Count mode ADDING with automatic reset
Output 1 active when count status \geq preset value 1 （timed signal）active 2

Automatic reset to zero when count status＝preset value 2 set to zero

SUB．月品
 Count mode SUBTRACTING

 with automatic resetOutput 1 active when count status \leq preset value 1
output 2 （timed signal）active
Automatic reset to preset 2 when count status $=0$
Reset to preset 2
AIIB．BAT Count mode ADDING with automatic reset and Batch counter
Output 2 （timed signal）active when main counter＝preset value 2

Automatic reset to zero when ＝preset 2 of automatic repetitions of preset 2 counter \geq preset 1 Manual reset sets both counters to zero．
Electrical reset sets only the main counter to zero．
main counter = zero
Batch counter counts the number of automatic repetitions of preset 2
Output 1 active when batch counter \geq Preset 1
Manual reset sets main counter to preset value 2 and batch counter to zero
Electronic reset only sets the main counter to preset value 2

AD D.TDT Count mode ADDING with automatic reset and Total counter

Output 2 (timed signal) active when main counter $=$ preset value 2
Automatic reset to zero when main counter = preset value 2 Total counter counts all the count pulses from the main counter Output 1 active when total counter \geq preset value 1 Manual Reset sets both counters to zero
Electrical reset sets only the main counter to zero
Count mode SUBTRACTING with automatic reset and Total counter
Output 2 (timed signal) active when main counter = zero Automatic reset to preset value 2 when main counter = zero Total counter counts (sub from preset value 1) all count pulses from main counter Output 1 active when Total counter \leq zero Manual reset sets both counters to the preset values Electrical reset sets only main counter to preset value 2

Tracking Preset mode

When preset 2 is changed then preset 1 automatically tracks it. Reset to zero
Preset 1 relative to Preset 2

TRAR Tracking Preset mode with automatic reset

When preset 2 is changed then preset 1 automatically tracks it. Reset to zero.
Automatic reset to zero when
main counter = preset value 2.
Preset 1 relative to Preset 2

7.8.5.3 Submenu for configuration

[DNF I G. Submenu for matching the input pulses to the display.

T.MODE Unit of time
 5EL
 Seconds

Decimal point setting determines the resolution

MIN Minutes
Decimal point setting determines the resolution
Hours
Decimal point setting determines the resolution
HHMM. 55 Hrs. Min. Sec.
IP Decimal point setting
(determines the resolution)
$0 \quad$ no decimal place
$0.0 \quad 1$ decimal place
$0.00 \quad 2$ decimal places
0.0003 decimal places

SETPT.

Set value
Set value can be programmed from 000000 to 999999
A previously programmed decimal point will be displayed

7.8.5.4 Submenu for reset mode

RE S.MDI. Submenu for setting the reset mode

RE 5.MOD. Reset mode
Manual reset (reset key) and electrical reset (reset input)
NDRRE 5. No reset possible (reset key and reset input inhibited)
EL.RES. Only manual reset possible (reset key)
MANRE 5. Only manual reset possible (reset key)

Electrical Reset:
Always resets only the main counter.

Manual Reset:

Resets the main counter (ACTUAL) and auxiliary counters (BATCH or TOTAL), if the value of the main counter or the value of an auxiliary counters is shown on the display.

7.8.5.5 Submenu for Preset 1

PRES	Submenu Preset 1		count \geq Preset 1
		$U^{--} U$	ADD mode output operations:
PRES 1	Preset 1 ON/OFF		timed signal at Output1, becomes passive with positive
ON	Preset 1 ON		direction and when count \geq
DFF	Preset 1 OFF and no function		Preset 1 and subsequently passive with negative direction
PR,DUT 1	Output signal		and when count \leq Preset 1
	ADD mode output operations: permanent signal at Output 1, becomes active when count \geq Preset 1 SUB mode output operations: permanent signal at Output 1, becomes active when count \leq Preset 1		timed output at Output 1, becomes passive with negative direction and when count \leq Preset 1 and subsequently passive with positive direction and when count \geq Preset 1
		T.OUT	Duration of timed signal of Output 1
	ADD mode output operations: permanent signal at Output 1, becomes passive when count \geq Preset 1	00.01	programmable from 00.01 to 99.99 sec . Timed signal is post-triggered
	SUB mode output operations: permanent signal at Output 1,	7.8.5.6 Submenu for Preset 2	
	becomes passive when count \leq	PR.ロUTट	Output signal
	Preset 1		ADD mode output operations: permanent signal at Output 2, becomes active when count \geq Preset 2 SUB mode output operations: permanent signal at Output 2, becomes active when count \leq zero
Γ	ADD mode output operations: timed signal at Output 1 , becomes active when count \geq		
	Preset 1. (Activation only in positive direction) SUB mode output operations: timed output at Output 1,		
	becomes active when count \leq Preset 1 (Activation only in negative direction)	L	ADD mode output operations: permanent signal at Output 2, becomes passive when count \geq
L J	ADD mode output operations: timed signal at Output 1, becomes passive when count \geq Preset 1. (Deactivation only in positive direction) SUB mode output operations: timed output at Output 1, becomes passive when count \leq Preset 1. (Deactivation only in negative direction)		Preset 2 SUB mode output operations: permanent signal at Output 2, becomes passive when count \leq zero
		- 17	ADD mode output operations: timed signal at Output 2, becomes active when count \geq Preset 2 (Activation only in positive direction).
- П_ ก -	ADD mode output operations: timed signal at Output1, becomes active with positive direction and when count \geq Preset 1 and subsequently active with negative direction and when count \leq Preset 1 SUB mode output operations: timed signal at Output 1, becomes active with negative direction and when count \leq Preset 1 and subsequently active		SUB mode output operations: timed signal at Output 2, becomes active when count \leq zero (Activation only in negative direction)
		${ }^{-}$- J^{--}	ADD mode output operations: timed signal at Output 2, becomes passive when count \geq Preset 2 (Deactivation only in positive direction) SUB mode output operations: timed signal at Output 2,

becomes passive when count \leq zero (Deactivation only in negative direction).

ADD mode output operations: timed signal at Output 2, becomes active with positive direction and when count \geq Preset 2 and subsequently with negative direction and when count \leq Preset 2 SUB mode output operations: timed signal at Output 2, becomes active with negative direction and when count \leq zero and subsequently with positive direction and when count \geq zero
ADD mode output operations: timed signal at Output 2, becomes passive with positive direction and when count \geq Preset 2 and subsequently with negative direction and when count \leq Preset 2 SUB mode output operations: timed signal at Output 2, becomes passive with negative direction and when count \leq zero and subsequently with positive direction and when count \geq zero

T. DUTट Duration of timed signal of Output 2

00.01
programmable from 00.01 to 99.99 sec . Timed signal is post-triggered
Active:
Relays are activated when the preset value is reached.
Passive:
Relays becomes de-energized when the preset value is reached.

Timed outputs that have started are not aborted by a RESET.

8 Operation

8.1 Switching the display during operation

Pressing the DOWN key or the UP key once causes the name of the currently selected display function to be displayed for 2 sec . If within this time the DOWN key or the UP key is pressed a second time, then the display switches to the next or previous display function. This is confirmed by displaying the new name for a period of 2 sec . After 2 sec the count value that corresponds to the selected display function is displayed.
ACTUAL Main counter
Batch counter
Total counter
PRESS. 1
Preset 1
PRES.C

8.2 Setting the presets

8.2.1 Setting via front keys

Using the UP key or the DOWN key, select the preset to be changed, either PRES1 or PRES2 (see 8.1).

Select the decade using the RIGHT key or the LEFT key.
\Rightarrow the corresponding decade flashes

Set the count value using the UP key or the DOWN key.

The new setting is accepted either by pressing the ENTER key or after a period of 2 sec .

Preset setting is inhibited if the lock function for the presets is active (Parameter LOC.INP set to PRESET or PRG.PRE and keypad lock input LOCK active).

8.2.2 Teach Function

1. In the programming menu, programme MPI input 1 or MPI input 2 (MP.INP. 1 / MP.INP.2) to TEACH
2. In operating mode, select the preset to be changed: PRES1 or PRES2
3. In operating mode, briefly activate MPI input 1 or MPI input 2 (NPN or PNP input logic)
$\Rightarrow \quad$ the current count value will be adopted as
the new preset value

(1)
See also 9. Error messages.
The preset value can subsequently be further modified via the keypad. If preset entry is inhibited (see note 8.2.1), then the Teach Function is also locked out.

8.2.3 Teach-In with tracking presets

If a tracking (trailing) preset (TRAIL or TR.AR) has been programmed, the value for Preset 2 can be set either via the keypad or via the Teach-In function.
However the value for Preset 1 must be entered via the keypad. In this instance, it is not possible to use the Teach-In function.

(1)With output operations ADD.BAT, SUB.BAT, ADD.TOT, SUB.TOT, TRAIL and TR.AR, the Teach-In function is not available for Preset 1.

8.3 Set Function

The pulse counter and the timer can be set to a value by means of the Set function.

1. In the programming menu, programme MPI Input 1 or MPI Input 2 (MP.INP1 / MP.INP2) to SET
2. In the programming menu, set the parameter SETPT to the desired value
3. In operating mode, briefly activate MPI input 1 or MPI input 2 (NPN or PNP input logic)
\Rightarrow For add. output operations the pulse counter or timer will be set to the SETPT value
\Rightarrow For sub. output operations the pulse counter or timer will be set to the difference between the value of Preset 2 and the value of SETPT

8.4 Default Parameters

(1)

Note: Three default parameter sets have been permanently stored; these can be adapted as required. With each acknowledgment of the parameter sets, all parameters will be reset to the values listed in the table.

8.4.1 Entry into the default setting

Simultaneously press the UP key and the DOWN key for 3 sec.

$\square \triangle \nabla \triangleright$

Press the UP key or the DOWN key to continue with the programming.

The security prompt YES appears in the display
$\square \longrightarrow \triangle \nabla D$
DEFAUL. P.SET I

The security prompt appears in the display

Programming can be exited again using the ENTER key.

YS

Enter the default menu by pressing the ENTER key

The parameter set last programmed appears in the display

8.4.2 Selecting the parameter sets

$\square<\mathbf{A} \nabla \square$
$\square \triangleleft \triangle \nabla \triangleright$ key.
P.SET 1 Default parameter set 1
P.5ETC Default parameter set 2
P.5ET \exists Default parameter set 3

8.4.3 Accepting the setting

Pressing the ENTER key accepts the current setting and returns to the operating mode.
5 Al' The text SAVE is shown in the display for 2 sec .

8.4.4 Parameter Set Table

	P.SET1	P.SET2	P.SET3
HLP.TXT.	ON	ON	ON
SL.LANG.	EN	EN	EN
FUNCT	COUNT	COUNT	COUNT
INP.POL.	PNP	PNP	PNP
FILTER	ON	OFF	OFF
COUNT	CNT.DIR	UP.DN	QUAD
MP.INP.1	LATCH	LATCH	SET
MP.INP.2	TEACH	SET	TEACH
LOC.INP.	PROG	PROG	PROG
MODE	ADD	SUB	TRAIL
FACTOR	01.0000	01.0000	01.0000
DIVISO.	01.0000	01.0000	01.0000
DP	0	0	0.00
SETPT.	000000	000000	0000.00
RES.MOD.	MAN.EL	MAN.EL	MAN.EL
PRES.1	ON	ON	ON
PR.OUT1	$\boxed{ }$	$\boxed{\square}$	$\boxed{\square}$
T.OUT1		00.10	
PR.OUT2	$\boxed{ }$	$\boxed{\square}$	$\boxed{\square}$
T.OUT2		00.10	00.10

9 Error Message

Err 1	Set value ≤ 0 not allowed
Err 2	Set value \geq Preset 2 not allowed
Err 3	negative Teach-In value for Preset 1 not permitted
Err 4	Zero or negative Teach-In value for Preset 2 not permitted
Err 45	EEPROM error

10 Connections

10.1 Signal and Control Inputs

\mathbf{N}°	Designation	Function
1	INP A	Signal input A
2	INP B	Signal input B
3	RESET	Reset input
4	LOCK	Keypad lock
5	GATE	Gate input
6	MPI 1	User input 1
7	MPI 2	User input 2
8	AC: 24 VDC/80 mA DC: UB through	Sensected voltage supply
9	GND (0 VDC)	Common connection Signal and Control inputs

10.2 Supply Voltage and Outputs

N°	Designation	Function
10	Relay contact C. 2	Output 2
11	Relay contact N.O. 2	
12	Relay contact N.C. 2	
13	Relay contact C. 1	Output 1
14	Relay contact N.O. 1	
15	Relay contact N.C. 1	
16	$\begin{aligned} & \text { AC: } 100 \ldots 240 \mathrm{~V} \mathrm{AC} \pm 10 \% \mathrm{~N} \sim \\ & \text { DC: } 10 . .30 \mathrm{VDC} \\ & \hline \end{aligned}$	Supply voltage
17	$\begin{aligned} & \text { AC: } 100 \ldots 240 \mathrm{~V} \mathrm{AC} \pm 10 \% \text { L~ } \\ & \text { DC: GND (0 VDC) } \end{aligned}$	Supply voltage

11 Technical Data

11.1 General Data

Display Digit height
Overload/
Underload Data retention Operation

6 -digit, 14 -segment LED 14 mm Blinking, 1 sec., counter loses no pulses up to 1 decade >10 years, EEPROM 5 keys

11.2 Pulse Counter

Count frequency max. 55 kHz (see under 14 . Frequencies - typical)
Response time of the outputs:

Add;Sub;Trail	$<13 \mathrm{~ms}$
With automatic repeat	$<13 \mathrm{~ms}$
A/B; (A-B)/A	$<34 \mathrm{~ms}$

11.3 Tacho/Frequency Meter

Frequency range $\quad 0.01 \mathrm{~Hz}$ to 65 kHz (see under 14. Frequencies typ.
Measuring principle $\leq 76.3 \mathrm{~Hz}$ Time interval
(Period measurement) $>76.3 \mathrm{~Hz}$ Gate time Gate time approx. 13.1 ms
Measuring error $<0.1 \%$ per channel
Response time of the outputs:
1 -channel operation < $100 \mathrm{~ms} @ 40 \mathrm{kHz}$
$<350 \mathrm{~ms}$ @ 65 kHz
2-channel operation < 150 ms @ 40 kHz
<600 ms @ 65 kHz

11.4 Timer

Seconds	$0.001 \mathrm{sec} \ldots 999999 \mathrm{sec}$
Minutes	$0.001 \mathrm{~min} \ldots 999999 \mathrm{~min}$
Hours	$0.001 \mathrm{hrs} \ldots 999999 \mathrm{hrs}$
Hrs. Min.Sec	$00 \mathrm{hrs.00min.01sec} \mathrm{\ldots}$
	99 hrs .59 min .59 sec
Min. time measurable	$50 \mu \mathrm{~s}$
Measuring error	$<100 \mathrm{ppm}$
Output response time:	$<13 \mathrm{~ms}$

11.5 Signal and Control Inputs

SELV circuits, reinforced / double insulation Polarity: programmable NPN/PNP for all inputs in common
$\begin{array}{ll}\text { Input resistance } & 5 \mathrm{k} \Omega \\ \text { Pulse shape } & \text { any }\end{array}$
Switching level with AC supply:
HTL level Low: 0... 4 VDC
High: 12 ... 30 VDC
4... 30 V DC level Low: $0 . . .2 V D C$ High: $\quad 3.5$... 30 VDC
Switching level with DC supply:
HTL level Low: $0 \ldots 0,2 \times U_{B}$ High: $0.6 \times U_{B} \ldots 30$ VDC
4... 30 V DC level Low: $0 . .2$ VDC High: $\quad 3.5$... 30 VDC
Minimum pulse length of the Reset input: 1 ms
Minimum pulse length of the Control inputs: 10 ms

11.6 Outputs

Output 1 / Output 2

Relays with changeover contacts

Prescribed fuse:
Switching voltage
Switching current
max. 250 V AC/ 150 V DC max. 3 A AC/ DC min. 30 mA DC
Switching capacity max. 750 VA/ 90 W

1.	The maximum values shall in no case be exceeded!

Mechanical service life (switching cycles)
N° of switching cycles at $3 \mathrm{~A} / 250 \mathrm{~V}$ AC
N° of switching cycles at $3 \mathrm{~A} / 30 \mathrm{VDC}$
20×10^{6}
5×10^{4}
5×10^{4}

11.7 Supply Voltage

AC supply: $\quad 100 \ldots 240 \mathrm{~V} \mathrm{AC} /$ max. 11 VA $50 / 60 \mathrm{~Hz}$, Tolerance $\pm 10 \%$ ext. fuse protection: T 0.1 A
DC supply: 10 ... $30 \mathrm{~V} \mathrm{DC} /$ max. 5.5 W reverse polarity protection, SELV, CLASS II (Limited Power Source) ext. fuse protection T 0.25 A

11.8 Sensor Supply Voltage

(Voltage output for external sensors)
SELV circuits, reinforced / double insulation for AC supply: $\quad 24 \mathrm{VDC} \pm 15 \%, 80 \mathrm{~mA}$ for DC supply: max. 80 mA , ext. voltage supply is connected through

11.9 Climatic Conditions

Operating temperature: $-20^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$
Storage temperature: $-25^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$
Relative humidity: R.H. 93% at $+40^{\circ} \mathrm{C}$,
Non-condensing
Altitude:
up to 2000 m

11.10 EMC

Noise immunity: EN 61000-6-2 with shielded signal and control cables
Noise emission: EN 55011 Class B

11.11 Device Safety

$\begin{array}{ll}\text { Design to: } & \text { EN } 61010 \text { Part } 1 \\ \text { Protection Class: } & \text { Protection Class } 2 \text { (front side) }\end{array}$

1. Only the front side is classified as accessible for the operator.
Application area:
Pollution level 2
over-voltage Category II
Insulation: Front: double insulation, Rear side: basic insulation, Signal inputs and und sensor power supply: SELV

11.12 Mechanical Data

Housing:
Dimensions:
Panel cut-out: Installation depth:
Weight:
Protection:
Housing material:
Panel-mount housing to DIN 43 700, RAL 7021
$96 \times 48 \times 102 \mathrm{~mm}$
$92^{+0,8} \times 45^{+0,6} \mathrm{~mm}$
ca. 92 mm incl. terminals ca. 180 g IP65 (front, device only)
Polycarbonate UL94 V-2
Vibration resistance: $10-55 \mathrm{~Hz} / 1 \mathrm{~mm} / \mathrm{XYZ}$
EN 60068-2-6 $\quad 30 \mathrm{~min}$. in each direction
Shock resistance:
EN 60068-2-27
100G / 2 ms / XYZ
3 times in each direction
EN 60068-2-29
$10 \mathrm{G} / 6 \mathrm{~ms} / \mathrm{XYZ}$
2000 times in each direction

11.13 Connections

Supply voltage and outputs:
Plug-in screw terminal, 8-pin, RM 5.00
Core cross - section, max. $2.5 \mathrm{~mm}^{2}$
Signal and control inputs:
Plug-in screw terminal, 9-pin, RM 3.50
Core cross - section, max. $1.5 \mathrm{~mm}^{2}$

12 Scope of Delivery

Preset counter
Mounting clip
Instruction manual

13 Ordering Codes

89XX-X

Interface
1 = None
5 = RS485
Supply voltage
$0=10 \ldots 30 \mathrm{VDC}$
$1=100 \ldots 240 \vee \mathrm{AC} \pm 10 \%$
Input trigger levels
$8=4 \ldots 30 \mathrm{~V}$ DC level
$9=$ HTL level

14 Frequencies (typical)

NOTE: Switching levels of the inputs
Switching levels with AC supply:

HTL level	Low:	$0 \ldots 4 \mathrm{VDC}$
	High:	$12 \ldots 30 \mathrm{VDC}$
$4 \ldots 30 \mathrm{~V}$ DC level	Low:	$0 \ldots 2 \mathrm{VDC}$
	High:	$3.5 \ldots 30 \mathrm{VDC}$
Switching levels with DC supply:		
HTL level	Low:	$0 \ldots 0.2 \times \mathrm{U}_{\mathrm{B}}$
	High:	$0.6 \times \mathrm{U}_{\mathrm{B}} \ldots 30 \mathrm{VDC}$
$4 \ldots 30 \mathrm{~V}$ DC level	Low:	$0 \ldots 2 \mathrm{VDC}$
	High:	$3.5 \ldots 30 \mathrm{VDC}$

14.1 Pulse Counter

HTL level, signal shape square wave 1:1
AC supply
DC supply 12 V
DC supply 24 V

typ. Low	2.5 V
typ. High	22 V
typ. Low	2 V
typ. High	10 V
typ. Low	2.5 V
typ. High	22 V

	Add Sub Trail	AddAr SubAr AddBat SubBat TrailAr	AddTot SubTot
Cnt.Dir	55 kHz	2.6 kHz	2.5 kHz
Up.Dn ; Up.Up	29 kHz	2.6 kHz	2.5 kHz
Quad ; Quad 2	28 kHz	1.2 kHz	1.1 kHz
Quad 4	18 kHz	1.1 kHz	0.8 kHz
A/B ; (A-B)/A	29 kHz		

4... 30 V DC level, signal shape square wave 1:1 typ. Low $\quad 1.0 \mathrm{~V}$
typ. High
4.0 V

	Add Sub Trail	AddAr SubAr AddBat SubBat TrailAr	AddTot SubTot
Cnt.Dir	9 kHz	2.5 kHz	2.2 kHz
Up.Dn ; Up.Up	9 kHz	2.5 kHz	2.2 kHz
Quad ; Quad 2	9 kHz	1.1 kHz	1.1 kHz
Quad 4	9 kHz	1.1 kHz	0.9 kHz
A/B ; (A-B)/A	9 kHz		

14.2 Frequency Meter

HTL level, signal shape square wave 1:1

AC supply	typ. Low typ. High	2.5 V
DC supply 12 V	typ. Low DC supply 24 V	V typ. High typ. Low typ. High

4... 30 V DC level, signal shape square wave 1:1

typ. Low	1.0 V
typ. High	4.0 V

	HTL	5V
A	65 kHz	9 kHz
A - B $; \mathrm{A}+\mathrm{B}$ $\mathrm{A} / \mathrm{B} ;(\mathrm{A}-\mathrm{B}) / \mathrm{A}$	65 kHz	9 kHz
Quad	30 kHz	9 kHz

15 Input modes: Pulse counting

Function QUAD4	Diagram Note: No counting when GATE input is active											PNP: Count on rising edge NPN: Count on falling edge
												A $90^{\circ} \mathrm{B}$ Inp A: Count input Count on rising and on falling edges Inp B: Count input Count on rising and on falling edges, Reverse direction Add: Display 0 --> Preset Sub: Display Preset -> 0
A / B												Inp A: Count input 1 Inp B: Count input 2 Formula: A / B
A \% B	INP A											Inp A: Count input 1 Inp B: Count input 2 Formula: $(A-B) / A \times 100$

16 Input modes: Timing

Function	Diagram	PNP: Count on rising edge NPN: Count on falling edge
INA.INB		Inp A: Start Inp B: Stop Add: Display 0 --> Preset Sub: Display Preset -> 0
INB.INB		Inp A: no function Inp B: Start/Stop Add: Display 0 --> Preset Sub: Display Preset -> 0
FREE.RN		Inp A: no function $\operatorname{Inp} B$: no function Control of the timing only via the GATE input Add: Display 0 --> Preset Sub: Display Preset -> 0
AUTO		Inp A: no function Inp B: no function Control of the timing via RESET (manual or electrical) Add: Display 0 --> Preset Sub: Display Preset ->0

17 Input modes: Frequency meter

18 Output operations

Mode	Diagram	Mode	Diagram
	t Only in mode L and ■		t Additionally in mode 几, and 区Г
ADD		SUB	
ADD.AR		SUB.AR	ReSET
ADD.BAT		SUB.BAT	
ADD.TOT		SUB.TOT	

19 Help Texts

PROG.	NO	NO PROGRAMMING
PROG.	YES	START PROGRAMMING
LANGU.		MAIN MENU SELECT LANGUAGE
HLP.TXT.	YES	HELPTEXT ON
SL.LANG.	DE	DEUTSCH
SL.LANG.	EN	ENGLISH
FUNCT.		MAIN MENU BASIC FUNCTION
FUNCT.	COUNT	BASIC FUNCTION COUNTER
FUNCT.	TIMER	BASIC FUNCTION TIMER
FUNCT.	TACHO	BASIC FUNCTION TACHOMETER/FREQUENCY METER
INPUT		MAIN MENU INPUTS
INP.POL.	PNP	INPUT POLARITY PNP
INP.POL.	NPN	INPUT POLARITY NPN
FILTER	OFF	INPUT 30HZ FILTER OFF
FILTER	ON	INPUT 30HZ FILTER ON
CNT.INP.	CNT.DIR	INPUT MODE COUNT DIRECTION
CNT.INP.	UP.DN	INPUT MODE UP-DOWN
CNT.INP.	UP.UP	INPUT MODE UP-UP
CNT.INP.	QUAD	INPUT MODE QUADRATURE
CNT.INP.	QUAD2	INPUT MODE QUADRATURE $\times 2$
CNT.INP.	QUAD4	INPUT MODE QUADRATURE $\times 4$
CNT.INP.	A/B	INPUT MODE A/B
CNT.INP.	A\%B	INPUT MODE (A-B)/A IN \%
START	INA.INB	START INPUT A / STOP INPUT B
START	INB.INB	START INPUT B / STOP INPUT B
START	FRE.RUN	TIMER IN FREE RUN MODE
START	AUTO	TIMER IN AUTO STOP MODE
TAC.INP.	A	ONLY INPUT A
TAC.INP.	A-B	INPUT MODE A-B
TAC.INP.	A+B	INPUT MODE A+B
TAC.INP.	QUAD	INPUT MODE QUADRATURE
TAC.INP.	A/B	INPUT MODE A/B
TAC.INP.	A\%B	INPUT MODE (A-B)/A IN \%
MP.INP.	LATCH	FUNCTION MP-INPUT_LATCH
MP.INP.	TEACH	FUNCTION MP-INPUT_TEACH
MP.INP._	SET	FUNCTION MP-INPUT_ SET
LOC.INP.	PROG.	LOCK PROGRAMMING
LOC.INP.	PRESET	LOCK EDITING OF PRESETS
LOC.INP.	PRG.PRE.	LOCK PROGRAMMING AND EDITING OF PRESETS
MODE		MAIN MENU OPERATION MODE
MODE	ADD	MODE ADDING
MODE	ADD.AR	MODE ADDING WITH AUTOMATIC RESET
MODE	ADD.BAT	MODE ADDING WITH AUTOMATIC RESET + BATCH COUNTER
MODE	ADD.TOT	MODE ADDING WITH AUTOMATIC RESET + TOTAL COUNTER
MODE	TRAIL	MODE ADDING OUTPUT 1 TRACKING PRESET OF OUTPUT 2
MODE	TR.AR	MODE ADDING OUTPUT 1 TRACKING PRESET OF OUTPUT 2 WITH AUTOMATIC RESET
MODE	SUB	MODE SUBTRACTING

MODE	SUB.AR	MODE SUBTRACTING WITH AUTOMATIC RESET
MODE	SUB.BAT	MODE SUBTRACTING WITH AUTOMATIC RESET + BATCH COUNTER
MODE	SUB.TOT	MODE SUBTRACTING WITH AUTOMATC RESET + TOTAL COUNTER
CONFIG.		MAIN MENU CONFIGURATION
FACTOR		MULTIPLICATION FACTOR
DIVISO.		DIVISION FACTOR
T.MODE	SEC	TIME RANGE SECONDS
T.MODE	MIN	TIME RANGE MINUTES
T.MODE	HOUR	TIME RANGE HOURS
T.MODE	HH.MM.SS	TIME RANGE HH.MM.SS
T.MODE	SEC-1	TACHO RANGE SEC-1
T.MODE	MIN-1	TACHO RANGE MIN-1
DP		DECIMAL POINT
SETPT.		SET VALUE
AVG	OFF	NO AVERAGE
AVG	AVG 2	AVERAGE OF 2 MEASUREMENTS
AVG	AVG 5	AVERAGE OF 5 MEASUREMENTS
AVG	AVG10	AVERAGE OF 10 MEASUREMENTS
AVG	AVG20	AVERAGE OF 20 MEASUREMENTS
START		START DELAY TIME [SEC]
WAIT 0		WAIT TIME UNTIL DISPLAY ZERO [SEC]
RES.MOD		MAIN MENU RESET MODE
RES.MOD.	NO.RES.	NO RESET FUNCTION
RES.MOD.	MAN.RES.	RESET VIA FRONT BUTTON
RES.MOD.	EL.RES.	RESET VIA RESET INPUT
RES.MOD.	MAN.EL.	RESET VIA FRONT BUTTON OR RESET INPUT
PRES. 1		MAIN MENU PRESET 1
PRES. 1	ON	PRESET 1 ON
PRES. 1	OFF	PRESET 1 OFF
PR.OUT1	---	PERMANENT SIGNAL FORM AT OUTPUT 1
PR.OUT1	------	PERMANENT SIGNAL FORM AT OUTPUT 1
PR.OUT1	----	TIMED SIGNAL FORM IN MAIN DIRECTION AT OUTPUT 1
PR.OUT1	-------	TIMED SIGNAL FORM IN MAIN DIRECTION AT OUTPUT 1
PR.OUT1	------	TIMED SIGNAL FORM IN BOTH DIRECTION AT OUTPUT 1
PR.OUT1	----------	TIMED SIGNAL FORM IN BOTH DIRECTION AT OUTPUT 1
T.OUT 1		ACTIVE TIME FOR OUTPUT 1
PRES. 2		MAIN MENU PRESET 2
PR.OUT2	------	PERMANENT SIGNAL FORM AT OUTPUT 2
PR.OUT2	------	PERMANENT SIGNAL FORM AT OUTPUT 2
PR.OUT2	---	TIMED SIGNAL FORM IN MAIN DIRECTION AT OUTPUT 2
PR.OUT2	-------	TIMED SIGNAL FORM IN MAIN DIRECTION AT OUTPUT 2
PR.OUT2	-----	TIMED SIGNAL FORM IN BOTH DIRECTION AT OUTPUT 2
PR.OUT2	---------	TIMED SIGNAL FORM IN BOTH DIRECTION AT OUTPUT 2
T.OUT 2		ACTIVE TIME FOR OUTPUT 2
END.PRG.	NO	REPEAT PROGRAMMING
END.PRG.	YES	EXIT PROGRAMMING AND STORE DATAS

20 Dimensional Drawings

Dimensions in mm [inch]

Rear view:

Panel cut-out:

Terminal Assignment:

Pin	RS232 (optional)
22	GND
23	RXD
24	TXD
25	-
26	-

Pin	RS485 (optional)
22	-
23	D0
24	DI
25	-
26	-

Pin	Signal and control inputs
1	INP A (Signal input A)
2	INP B (Signal input B)
3	RESET (Reset input)
4	LOCK (Keypad lock)
5	GATE (Gate input)
6	MPI 1 (User input 1)
7	MPI 2 (User input 2)
8	Sensor power supply AC: $24 \mathrm{~V} \mathrm{DC/80} \mathrm{~mA}$ DC: UB Connected through
9	Shared connection for signal and control inputs GND (0 VDC)

Pin	Version with relay/optocoupler		
10	Relay contact C. 2		
11	Relay contact N. 0.2	\quad	Relat 2
:---	\quad	Output 1	
:---			

